

SAFETY DATA SHEET

890 Primer/Finish - all colours

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Product name: 890 Primer/Finish - all colours

SDS code : 8276457

2173925/5L

1.2 Relevant identified uses of the substance or mixture and uses advised against

	Identified uses	
Mdustrial use		
	Uses advised against	
All other uses		

Product use : See Technical Data Sheet.

1.3 Details of the supplier of the safety data sheet

Cromadex
Unit 5 Redwood Business Park
Oldbury Road Smethwick
West Midlands
B66 1NJ

Tel:+44 (0) 121 555 1500 Fax: +44 (0) 121 555 6417

e-mail address of person responsible for this SDS

: sdsfellinguk@akzonobel.com

1.4 Emergency telephone number

National advisory body/Poison Centre

Telephone number : +44 (0)344 892 0111

Supplier

Telephone number : +44 (0) 779 965 6086

+44 (0)207 635 9191 (for doctors and hospitals)

Hours of operation : 24 hours

Date of issue/Date of revision : 20-1-2023 Version : 2

Date of previous issue :14-11-2022 1/28 AkzoNobel

890 Primer/Finish - all colours

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Product definition : Mixture

Classification according to Regulation (EC) No. 1272/2008 [CLP/GHS]

Fam. Liq. 3, H226 Skin Irrit. 2, H315 Eye Irrit. 2, H319 STOT SE 3, H335 STOT SE 3, H336 STOT RE 2, H373 Aquatic Chronic 2, H411

The product is classified as hazardous according to Regulation (EC) 1272/2008 as amended.

See Section 16 for the full text of the H statements declared above.

See Section 11 for more detailed information on health effects and symptoms.

2.2 Label elements

Hazard pictograms

Signal word : Warning

Hazard statements : Fammable liquid and vapour.

Causes skin irritation.

Causes serious eye irritation.

May cause respiratory irritation.

May cause drowsiness or dizziness.

May cause damage to organs through prolonged or repeated exposure.

Toxic to aquatic life with long lasting effects.

Precautionary statements

Prevention : **W**ear protective gloves. Wear eye or face protection. Keep away from heat, hot

surfaces, sparks, open flames and other ignition sources. No smoking. Avoid release to the environment. Do not breathe vapour. Wash hands thoroughly after

handling.

Response : Collect spillage. Get medical advice/attention if you feel unwell. IF INHALED: Call a

POISON CENTER or doctor if you feel unwell. Take off contaminated clothing and wash it before reuse. IF ON SKIN: Wash with plenty of water. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice or

attention.

Storage: Store in a well-ventilated place. Keep container tightly closed. Keep cool.

Disposal : Dispose of contents and container in accordance with all local, regional, national

and international regulations.

Hazardous ingredients : n-butyl acetate

Reaction mass of ethylbenzene and xylene Solvent naphtha (petroleum), light arom.

Hydrocarbons, C9, aromatics Aromatic hydrocarbons, C8 2-methylpropan-1-ol

Hydrocarbons, C9-C12, n-alkanes, isoalkanes, cyclic, aromatics (2-25%)

Supplemental label

elements

: Contains butyl acrylate. May produce an allergic reaction.

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-20222/28AkzoNobel

890 Primer/Finish - all colours

SECTION 2: Hazards identification

Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles : Not applicable.

Special packaging requirements

Containers to be fitted with child-resistant

: Not applicable.

fastenings

Tactile warning of danger : Not applicable.

2.3 Other hazards

Product meets the criteria for PBT or vPvB according to Regulation (EC) No. 1907/2006, Annex XIII : This mixture does not contain any substances that are assessed to be a PBT or a

vPvB.

Other hazards which do

not result in classification

: None known.

SECTION 3: Composition/information on ingredients

3.2 Mixtures : Mixture

Product/ingredient name	Identifiers	%	Classification	Specific Conc. Limits, M-factors and ATEs	Туре
-butyl acetate	REACH #: 01-2119485493-29 EC: 204-658-1 CAS: 123-86-4 Index: 607-025-00-1	≥5 - ≤10	Flam. Liq. 3, H226 STOT SE 3, H336 EUH066	-	[1] [2]
trizinc bis(orthophosphate)	REACH #: 01-2119485044-40 EC: 231-944-3 CAS: 7779-90-0 Index: 030-011-00-6	≥5 - ≤10	Aquatic Acute 1, H400 Aquatic Chronic 1, H410	M [Acute] = 1 M [Chronic] = 1	[1]
Reaction mass of ethylbenzene and xylene	REACH #: 01-2119488216-32 EC: 905-588-0	≥5 - ≤10	Flam. Liq. 3, H226 Acute Tox. 4, H312 Acute Tox. 4, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 STOT SE 3, H335 STOT RE 2, H373 Asp. Tox. 1, H304 Aquatic Chronic 3, H412	ATE [Dermal] = 1100 mg/kg ATE [Inhalation (gases)] = 5000 ppm	[1] [2]
Solvent naphtha (petroleum), light arom.	EC: 265-199-0 CAS: 64742-95-6 Index: 649-356-00-4	≥5 - ≤10	Flam. Liq. 3, H226 STOT SE 3, H335 STOT SE 3, H336 Asp. Tox. 1, H304 Aquatic Chronic 2, H411	-	[1]
Hydrocarbons, C9, aromatics	REACH #: 01-2119455851-35	≥3 - ≤5	Flam. Liq. 3, H226 STOT SE 3, H335	EUH066: C ≥ 20%	[1]

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-20223/28AkzoNobel

890 Primer/Finish - all colours

SECTION 3: Composition/information on ingredient		SECTION	3: Com	position/in	formation	on ingredi	ents
---	--	----------------	--------	-------------	-----------	------------	------

	EC: 918-668-5 CAS: 128601-23-0		STOT SE 3, H336 Asp. Tox. 1, H304 Aquatic Chronic 2, H411 EUH066		
Aromatic hydrocarbons, C8	EC: 292-694-9 CAS: 90989-38-1 Index: 648-010-00-X	≥3 - ≤5	Flam. Liq. 3, H226 Acute Tox. 4, H312 Acute Tox. 4, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 STOT SE 3, H335 STOT RE 2, H373 (inhalation) Asp. Tox. 1, H304	ATE [Dermal] = 1100 mg/kg ATE [Inhalation (vapours)] = 11 mg/ I	[1]
2-methylpropan-1-ol	REACH #: 01-2119484609-23 EC: 201-148-0 CAS: 78-83-1 Index: 603-108-00-1	≥1 - ≤3	Flam. Liq. 3, H226 Skin Irrit. 2, H315 Eye Dam. 1, H318 STOT SE 3, H335 STOT SE 3, H336	-	[1]
Hydrocarbons, C9-C12, n-alkanes, isoalkanes, cyclic, aromatics (2-25%)	REACH #: 01-2119458049-33 EC: 919-446-0	≥1 - ≤3	Flam. Liq. 3, H226 STOT SE 3, H336 STOT RE 1, H372 (inhalation) Asp. Tox. 1, H304 Aquatic Chronic 2, H411 EUH066	-	[1]
Solvent naphtha (petroleum), heavy arom.	EC: 265-198-5 CAS: 64742-94-5	≥1 - ≤3	STOT SE 3, H336 Asp. Tox. 1, H304 Aquatic Chronic 2, H411 EUH066	-	[1]
4-hydroxy-4-methylpentan- 2-one	REACH #: 01-2119473975-21 EC: 204-626-7 CAS: 123-42-2	≤1	Flam. Liq. 3, H226 Eye Irrit. 2, H319 Repr. 2, H361d (oral) STOT SE 3, H335	Eye Irrit. 2, H319: C ≥ 10%	[1]
acetone	REACH #: 01-2119471330-49 EC: 200-662-2 CAS: 67-64-1 Index: 606-001-00-8	≤1	Flam. Liq. 2, H225 Eye Irrit. 2, H319 STOT SE 3, H336 EUH066	-	[1] [2]
naphthalene	REACH #: 01-2119561346-37 EC: 202-049-5 CAS: 91-20-3 Index: 601-052-00-2	≤0.3	Acute Tox. 4, H302 Carc. 2, H351 Aquatic Acute 1, H400 Aquatic Chronic 1, H410	ATE [Oral] = 500 mg/kg M [Acute] = 1 M [Chronic] = 1	[1] [2]
1-methylnaphthalene	EC: 201-966-8 CAS: 90-12-0	≤0.3	Not classified.	-	[2]
n-butyl acrylate	REACH #: 01-2119453155-43 EC: 205-480-7 CAS: 141-32-2 Index: 607-062-00-3	≤0.3	Flam. Liq. 3, H226 Acute Tox. 4, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317	ATE [Inhalation (vapours)] = 11 mg/ I	[1] [2]

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-20224/28AkzoNobel

890 Primer/Finish - all colours

	0001	1 1111101/1 1111311 - 6	iii colours		
SECTION 3: Compo	osition/informat	ion on in	gredients		
			STOT SE 3, H335 Aquatic Chronic 3, H412		
(Z)-octadec-9-enylamine	EC: 204-015-5 CAS: 112-90-3 Index: 612-283-00-3	≤0.3	Acute Tox. 4, H302 Skin Corr. 1B, H314 STOT SE 3, H335 STOT RE 2, H373 (gastrointestinal tract, immune system, liver) Asp. Tox. 1, H304 Aquatic Acute 1, H400 Aquatic Chronic 1, H410	ATE [Oral] = 500 mg/kg STOT RE 2, H373: C ≥ 10% M [Acute] = 10 M [Chronic] = 10	[1]
2-(2-butoxyethoxy)ethanol	REACH #: 01-2119475104-44 EC: 203-961-6 CAS: 112-34-5 Index: 603-096-00-8	≤0.3	Eye Irrit. 2, H319	-	[1] [2]
			See Section 16 for the full text of the H statements declared above.		

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment, are PBTs, vPvBs or Substances of equivalent concern, or have been assigned a workplace exposure limit and hence require reporting in this section.

Type

- Substance classified with a health or environmental hazard
- [2] Substance with a workplace exposure limit

Occupational exposure limits, if available, are listed in Section 8.

SECTION 4: First aid measures

4.1 Description of first aid measures

Eye contact

: Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Get medical attention.

Inhalation

: Remove victim to fresh air and keep at rest in a position comfortable for breathing. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention. If necessary, call a poison center or physician. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

Skin contact

: Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Continue to rinse for at least 10 minutes. Get medical attention. Wash clothing before reuse. Clean shoes thoroughly before reuse.

Ingestion

: Wash out mouth with water. Remove dentures if any. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention. If necessary, call a poison center or physician. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such

AkzoNobel

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-20225/28

890 Primer/Finish - all colours

SECTION 4: First aid measures

as a collar, tie, belt or waistband.

Protection of first-aiders

: No action shall be taken involving any personal risk or without suitable training. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

4.2 Most important symptoms and effects, both acute and delayed

There are no data available on the mixture itself. The mixture has been assessed following the conventional method of the CLP Regulation (EC) No 1272/2008 and is classified for toxicological properties accordingly. See Sections 2 and 3 for details.

Exposure to component solvent vapour concentrations in excess of the stated occupational exposure limit may result in adverse health effects such as mucous membrane and respiratory system irritation and adverse effects on the kidneys, liver and central nervous system. Symptoms and signs include headache, dizziness, fatigue, muscular weakness, drowsiness and, in extreme cases, loss of consciousness.

Solvents may cause some of the above effects by absorption through the skin. Repeated or prolonged contact with the mixture may cause removal of natural fat from the skin, resulting in non-allergic contact dermatitis and absorption through the skin.

If splashed in the eyes, the liquid may cause irritation and reversible damage.

Ingestion may cause nausea, diarrhea and vomiting.

This takes into account, where known, delayed and immediate effects and also chronic effects of components from short-term and long-term exposure by oral, inhalation and dermal routes of exposure and eye contact.

Contains butyl acrylate. May produce an allergic reaction.

Over-exposure signs/symptoms

Eye contact: Adverse symptoms may include the following:

pain or irritation

watering redness

Inhalation : Adverse symptoms may include the following:

respiratory tract irritation

coughing

nausea or vomiting

headache

drowsiness/fatigue dizziness/vertigo unconsciousness

Skin contact: Adverse symptoms may include the following:

irritation redness

Ingestion: No specific data.

4.3 Indication of any immediate medical attention and special treatment needed

Notes to physician : Treat symptomatically. Contact poison treatment specialist immediately if large

quantities have been ingested or inhaled.

Specific treatments: No specific treatment.

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing

: Use dry chemical, CO₂, water spray (fog) or foam.

Unsuitable extinguishing

media

media

: Do not use water jet.

Date of issue/Date of revision : 20-1-2023 Version : 2

Date of previous issue : 14-11-2022 6/28 AkzoNobel

890 Primer/Finish - all colours

SECTION 5: Firefighting measures

5.2 Special hazards arising from the substance or mixture

Hazards from the substance or mixture : Flammable liquid and vapour. Runoff to sewer may create fire or explosion hazard. In a fire or if heated, a pressure increase will occur and the container may burst, with the risk of a subsequent explosion. This material is toxic to aquatic life with long lasting effects. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain.

Hazardous combustion products

: Decomposition products may include the following materials:

carbon dioxide carbon monoxide sulfur oxides phosphorus oxides metal oxide/oxides

5.3 Advice for firefighters

Special protective actions for fire-fighters

: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool.

Special protective equipment for fire-fighters : Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode. Clothing for fire-fighters (including helmets, protective boots and gloves) conforming to European standard EN 469 will provide a basic level of protection for chemical incidents.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

For non-emergency personnel

: No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilt material. Shut off all ignition sources. No flares, smoking or flames in hazard area. Avoid breathing vapour or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.

For emergency responders: If specialised clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".

6.2 Environmental precautions

: Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities. Collect spillage.

6.3 Methods and material for containment and cleaning up

Small spill

: Stop leak if without risk. Move containers from spill area. Use spark-proof tools and explosion-proof equipment. Dilute with water and mop up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.

Large spill

: Stop leak if without risk. Move containers from spill area. Use spark-proof tools and explosion-proof equipment. Approach the release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with noncombustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilt product.

Date of issue/Date of revision : 20-1-2023 Version : 2

AkzoNobel Date of previous issue :14-11-2022 7/28

890 Primer/Finish - all colours

SECTION 6: Accidental release measures

6.4 Reference to other sections

: See Section 1 for emergency contact information.

See Section 8 for information on appropriate personal protective equipment.

See Section 13 for additional waste treatment information.

SECTION 7: Handling and storage

The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s).

7.1 Precautions for safe handling

Protective measures

: Fut on appropriate personal protective equipment (see Section 8). Do not breathe vapour or mist. Do not ingest. Avoid contact with eyes, skin and clothing. Avoid release to the environment. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Do not enter storage areas and confined spaces unless adequately ventilated. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Store and use away from heat, sparks, open flame or any other ignition source. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Use only non-sparking tools. Take precautionary measures against electrostatic discharges. Empty containers retain product residue and can be hazardous. Do not reuse container.

Advice on general occupational hygiene

: Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.

7.2 Conditions for safe storage, including any incompatibilities

Store in accordance with local regulations. Store in a segregated and approved area. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Store locked up. Eliminate all ignition sources. Separate from oxidising materials. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabelled containers. Use appropriate containment to avoid environmental contamination. See Section 10 for incompatible materials before handling or use.

Seveso Directive - Reporting thresholds

Danger criteria

	Notification and MAPP threshold	Safety report threshold
P5c	5000 tonne	50000 tonne
E2	200 tonne	500 tonne

7.3 Specific end use(s)

Recommendations : Not available.

Industrial sector specific : Not available.

solutions

SECTION 8: Exposure controls/personal protection

The information in this section contains generic advice and guidance. Information is provided based on typical anticipated uses of the product. Additional measures might be required for bulk handling or other uses that could significantly increase worker exposure or environmental releases.

8.1 Control parameters

Occupational exposure limits

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-20228/28AkzoNobel

890 Primer/Finish - all colours

SECTION 8: Exposure controls/personal protection

Product/ingredient name	Exposure limit values
<mark>ਯ-</mark> butyl acetate	EH40/2005 WELs (United Kingdom (UK), 1/2020).
•	STEL: 966 mg/m³ 15 minutes.
	STEL: 200 ppm 15 minutes.
	TWA: 724 mg/m³ 8 hours.
	TWA: 150 ppm 8 hours.
Reaction mass of ethylbenzene and xylene	EH40/2005 WELs (United Kingdom (UK), 1/2020). Absorbed
	through skin.
	STEL: 441 mg/m³ 15 minutes.
	STEL: 100 ppm 15 minutes.
	TWA: 220 mg/m³ 8 hours.
	TWA: 50 ppm 8 hours.
2-methylpropan-1-ol	EH40/2005 WELs (United Kingdom (UK), 1/2020).
	STEL: 231 mg/m³ 15 minutes.
	STEL: 75 ppm 15 minutes.
	TWA: 154 mg/m³ 8 hours.
	TWA: 50 ppm 8 hours.
4-hydroxy-4-methylpentan-2-one	EH40/2005 WELs (United Kingdom (UK), 1/2020).
	STEL: 362 mg/m³ 15 minutes.
	STEL: 75 ppm 15 minutes.
	TWA: 241 mg/m³ 8 hours.
	TWA: 50 ppm 8 hours.
acetone	EH40/2005 WELs (United Kingdom (UK), 1/2020).
	STEL: 3620 mg/m³ 15 minutes.
	STEL: 1500 ppm 15 minutes.
	TWA: 1210 mg/m³ 8 hours.
	TWA: 500 ppm 8 hours.
naphthalene	EU OEL (Europe, 1/2022). Notes: list of indicative
	occupational exposure limit values
	TWA: 50 mg/m³ 8 hours.
4. manatha dha amana hatha al ama	TWA: 10 ppm 8 hours.
1-methylnaphthalene	EU OEL (Europe, 1/2022). [Polycyclic aromatic hydrocarbons
n butul condete	mixtures] Absorbed through skin.
n-butyl acrylate	EH40/2005 WELs (United Kingdom (UK), 1/2020).
	STEL: 26 mg/m³ 15 minutes.
	STEL: 5 ppm 15 minutes. TWA: 5 mg/m³ 8 hours.
	TWA: 3 flight 6 flours. TWA: 1 ppm 8 hours.
2-(2-butoxyethoxy)ethanol	EH40/2005 WELs (United Kingdom (UK), 1/2020).
2-(2-but0xyeti10xy <i>)</i> eti1al10l	, , , , , , , , , , , , , , , , , , , ,
	TWA: 10 ppm 8 hours. STEL: 15 ppm 15 minutes.
	TWA: 67.5 mg/m³ 8 hours.
	STEL: 101.2 mg/m³ 15 minutes.
	5122. 101.2 mg/m 10 mmatos.

procedures

Recommended monitoring: If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment. Reference should be made to monitoring standards, such as the following: European Standard EN 689 (Workplace atmospheres - Guidance for the assessment of exposure by inhalation to chemical agents for comparison with limit values and measurement strategy) European Standard EN 14042 (Workplace atmospheres - Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents) European Standard EN 482 (Workplace atmospheres - General requirements for the performance of procedures for the measurement of chemical agents) Reference to national guidance documents for methods for the determination of hazardous substances will also be required.

DNELs/DMELs

Date of issue/Date of revision	: 20-1-2023	Version : 2	
Date of previous issue	: 14-11-2022	9/28	AkzoNobel

890 Primer/Finish - all colours

SECTION 8: Exposure controls/personal protection

Product/ingredient name	Туре	Exposure	Value	Population	Effects
p-butyl acetate	DNEL	Short term Oral	2 mg/kg	General	Systemic
pr bary accrate	DIVLE	onore torm oran	bw/day	population	Cyclonic
	DNEL	Long term Oral	2 mg/kg	General	Systemic
			bw/day	population	
	DNEL	Long term Dermal	3.4 mg/kg	General	Systemic
			bw/day	population	
	DNEL	Short term Dermal	6 mg/kg	General	Systemic
	DNEL	Long torm Dormal	bw/day	population Workers	Cuatamia
	DINEL	Long term Dermal	7 mg/kg bw/day	Workers	Systemic
	DNEL	Short term Dermal	11 mg/kg	Workers	Systemic
			bw/day		-,
	DNEL	Long term	12 mg/m³	General	Systemic
		Inhalation		population	
	DNEL	Long term	35.7 mg/m ³	General	Local
	DNEL	Inhalation	40 m g/m 3	population Workers	Cuatamia
	DINEL	Long term Inhalation	48 mg/m³	Workers	Systemic
	DNEL	Short term	300 mg/m ³	General	Local
	D. 122	Inhalation	000 mg/m	population	20041
	DNEL	Short term	300 mg/m ³	General	Systemic
		Inhalation		population	
	DNEL	Long term	300 mg/m ³	Workers	Local
	האורו	Inhalation	600/3	\\/ = w < = w=	l and
	DNEL	Short term Inhalation	600 mg/m ³	Workers	Local
	DNEL	Short term	600 mg/m ³	Workers	Systemic
	DIVLE	Inhalation	ooo mg/m	VVOIKOIS	Cyclenno
trizinc bis(orthophosphate)	DNEL	Long term Oral	0.83 mg/	General	Systemic
, , , ,			kg bw/day	population	
	DNEL	Long term	2.5 mg/m ³	General	Systemic
	חארו	Inhalation	F / 3	population	Cuatamaia
	DNEL	Long term Inhalation	5 mg/m³	Workers	Systemic
	DNEL	Long term Dermal	83 mg/kg	General	Systemic
			bw/day	population	, , , , , , , , , , , , , , , , , , , ,
	DNEL	Long term Dermal	83 mg/kg	Workers	Systemic
			bw/day		
Reaction mass of ethylbenzene and	DNEL	Long term Oral	1.6 mg/kg	General	Systemic
xylene	DNEL	Long term	bw/day 14.8 mg/m³	population General	Systemic
	DINLL	Inhalation	14.6 mg/m	population	Systemic
	DNEL	Long term	77 mg/m³	Workers	Systemic
		Inhalation			
	DNEL	Long term Dermal	108 mg/kg	General	Systemic
	ה. ייבי	Laman Arrows D	bw/day	population	O. anta mail
	DNEL	Long term Dermal	180 mg/kg	Workers	Systemic
	DNEL	Short term	bw/day 289 mg/m³	Workers	Local
	DINCL	Inhalation	209 mg/m	VVOINGIS	Local
	DNEL	Short term	289 mg/m ³	Workers	Systemic
		Inhalation			
Solvent naphtha (petroleum), light	DNEL	Long term	0.41 mg/m ³		Systemic
arom.	D. :=:	Inhalation		population	
	DNEL	Long term	1.9 mg/m ³	Workers	Systemic
	DNEL	Inhalation Long term	178.57 mg/	General	Local
	DINCL	Inhalation	m ³	population	Local
	DNEL	Short term	640 mg/m ³	General	Local
1	1	I	<u> </u>	1	ı

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202210/28

AkzoNobel

890 Primer/Finish - all colours

SECTION 8: Exposure controls/personal protection

Inhalation ONEL Long term Inhalation One Short term Inhalation One	ECTION 6: Exposure com	1015/p	ersonal prote	Ction		
DNEL Long term malation m³ Workers Local moles Morkers Local moles Morkers Local moles Morkers moles Morkers Morke			Inhalation			
DNEL Inhalation (Inhalation (I		DNEL	Long term	837.5 mg/	Workers	Local
DNEL Short term 1125 mg/ m³ General population Systemic			Inhalation	m³		
DNEL Obstaterm inhalation DNEL Obstaterm inhalation DNEL Obstate DNEL		DNEL	Short term	1066.67	Workers	Local
DNEL Obstaterm inhalation DNEL Obstaterm inhalation DNEL Obstate DNEL						
DNEL DNEL Cong term 1.9 mg/m² Dopulation DNEL Cong term Dnet DNEL Dnet		DNFI			General	Systemic
Hydrocarbons, C9, aromatics DNEL Inhalation DNEL Long term Inhalation DNEL Long term Inhalation DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dermal DNEL Long term DNEL Long term DNEL Long term DNEL DNEL Long term DNEL DNEL Long term DNEL DNEL DNEL DNEL DNEL DNEL DNEL DNEL		DIVEL				Cyclonic
Hydrocarbons, C9, aromatics DNEL Cong term Chinalation Chinalatio		DNEI				Systemia
Hydrocarbons, C9, aromatics DNEL long term Inhalation DNEL Long term DNEL Long term Dermal DNEL Long term Dermal DNEL Long term DNEL Long term DNEL Short term Inhalation DNEL Long term DNEL Long term DNEL Long term DNEL Long term DNEL Short term Inhalation DNEL Long term DNEL Short term Inhalation DNEL Long term Inhalation DNEL Long term DNEL Short term DNEL		DINEL			Workers	Systemic
DNEL Long term Inhalation DNEL Long term Dermal DNEL Long term Dermal DNEL Long term DNEL DNEL DNEL DNET DNEL DNET DNET DNET DNET DNET DNET DNET DNET		5.151		1		
DNEL Long term Inhalation DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dermal Inhalation DNEL Long term Dermal DNEL Short term Inhalation DNEL Short term Inhalation DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dnet Inhalation DNEL Short term Inhalation DN	Hydrocarbons, C9, aromatics	DNEL		0.41 mg/m ³		Systemic
Inhalation DNEL DNEL DNEL DNEL DNEL DNEL DNEL Dorg term Dermal DNEL Dorg term Dermal DNEL Dorg term Dorg t						
DNEL Long term Dermal 11 mg/kg General population Systemic DNEL Long term Dermal 125 mg/kg bw/day Workers Systemic DNEL Long term 178.57 mg/ m² population Systemic DNEL Long term 178.57 mg/ population DNEL Long term 178.57 mg/ population DNEL Long term 1066.67 Inhalation DNEL Short term 1066.67 Inhalation DNEL Short term 1152 mg/ Inhalation DNEL Long term 1152 mg/ General population DNEL DNEL DNEL DNEL Long term 1152 mg/ General population DNEL DNEL DNEL DNEL Long term 1152 mg/ General population DNEL DNEL		DNEL		1.9 mg/m³	Workers	Systemic
DNEL Long term Dermal bw/day population General population DNEL long term Dermal DNEL Long term population DNEL Short term population DNEL DNEL Short term population DNEL Short term population DNEL DNEL DNEL DNEL DNEL DNEL DNEL DNEL			Inhalation			
DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dermal DNEL Long term DNEL Long term DNEL DNEL Long term DNEL		DNEL	Long term Oral	11 mg/kg	General	Systemic
DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dermal DNEL Long term DNEL Long term DNEL DNEL Long term DNEL				bw/day	population	
DNEL Long term Dermal bw/day y 25 mg/kg bw/day 25 mg/ma		DNEL	Long term Dermal			Systemic
DNEL Long term Dermal 25 mg/kg bw/day 178.57 mg m³ population Local populat						- J.
DNEL Inhalation DNEL Inhalation DNEL Inhalation DNEL Short term Inhalation DNEL Inhalation DNEL Inhalation DNEL Short term Inhalation DNEL Inh		DNEI	Long term Dermal			Systemic
DNEL		DIVLL	Long term berman		WORKEIS	Oystoniio
Inhalation Short term 640 mg/m³ population Cocal Population		ראבי	Long torm	•	Conoral	Local
DNEL Inhalation DNEL Coal Inhalation DNEL Coal Inhalation DNEL DNEL Inhalation DNEL DNEL DNEL DNEL DNEL DNEL DNEL DNEL		DINEL				Local
Inhalation DNEL Coal DNEL D						l
DNEL Coal Inhalation DNEL Short term Inhalation DNEL Coal Inhalation DNEL Short term Oral Short term Inhalation DNEL Sho		DNEL		640 mg/m ³		Local
DNEL						
DNEL Nort term Inhalation DNEL Short term Inhalation DNEL Short term Inhalation DNEL Inhalation DNEL Short term Inhalation DNEL Solvent naphtha (petroleum), heavy arom. DNEL Dng term Doral Inhalation DNEL Long term Doral Inhalation DNEL Short term Oral Short term DNEL Shor		DNEL	Long term		Workers	Local
DNEL Inhalation Short term 1152 mg/ may population Workers Systemic Population Workers Local Population Workers Local Population Workers Local Population Workers Local Population Populat			Inhalation	m³		
DNEL Ong term Inhalation DNEL Cong term Inhalation DNEL Short term Inhalati		DNEL	Short term	1066.67	Workers	Local
DNEL Ong term Inhalation DNEL Cong term Inhalation DNEL Short term Inhalati			Inhalation	mg/m³		
Inhalation		DNEL			General	Systemic
2-methylpropan-1-ol DNEL Short term Inhalation DNEL Long term Dnemal Long term Inhalation DNEL Short term Inhalation In						-,
2-methylpropan-1-ol DNEL Long term Inhalation DNEL Long term Oral DNEL Long term Oral DNEL Long term Dermal DNEL Short term Dermal DPRIC Short term Dermal DPRIC Short term Dermal DPRIC Short term Dermal D		DNEI				Systemic
2-methylpropan-1-ol DNEL long term Inhalation DNEL Long term Inhalation Inhal		DIVLL			WORKEIS	Cysternic
Inhalation Long term Inhalation Long term Inhalation Long term Inhalation Long term O.03 mg/ kg bw/day DNEL Long term O.69 mg/m³ General Systemic population General Systemic DNEL Long term O.69 mg/m³ General Systemic O.69 mg/m³ General DNEL Long term O.69 mg/m³ General Dopulation DNEL Long term O.69 mg/m³ General Dopulation DNEL Long term O.69 mg/m³ General Dopulation DNEL Long term O.95 mg/ kg bw/day DNEL Long term DNEL DNEL Short term O.95 mg/ kg bw/day O.95 mg/ kg	2 mothylpropan 1 ol	DNEI			Conoral	Local
Solvent naphtha (petroleum), heavy arom. DNEL DNEL Long term Oral DNEL Long term Dermal DNEL Long term DNEL Short term DNE	2-methylpropan-1-or	DINEL		55 mg/m		Local
Solvent naphtha (petroleum), heavy arom. DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dnemal DNEL Long term Dnemal Dnem		D. 151		040 / 2		
Solvent naphtha (petroleum), heavy arom. DNEL Long term Dermal DNEL Long term DNEL DNEL DNEL DNEL DNEL DNEL DNEL DNEL		DNEL		310 mg/m ³	vvorkers	Local
arom. DNEL Long term Dermal DNEL Long term Dermal DNEL Long term Dnemal Inhalation DNEL Long term Dnemal D						
DNEL Long term Dermal Ng bw/day O.69 mg/m³ General population Workers Systemic Systemic Short term Oral Short term Oral Short term 143.5 mg/ Inhalation DNEL Short term 160.23 mg/ Inhalation M³ General population Workers Local Short term 160.23 mg/ Inhalation M³ General population Workers Systemic Systemic Systemic Systemic Morkers Systemic Morkers Systemic System	Solvent naphtha (petroleum), heavy	DNEL	Long term Oral			Systemic
DNEL Long term Inhalation DNEL Long term Dermal DNEL Short term Dral DNEL Short te	arom.			kg bw/day	population	
DNEL Long term Inhalation DNEL Long term Dermal Long term Dermal Inhalation DNEL Long term Dermal Dermal Inhalation DNEL Long term Dermal D		DNEL	Long term Dermal	0.28 mg/	General	Systemic
DNEL Long term Inhalation DNEL Long term Dermal Long term Dermal Inhalation DNEL Long term Dermal Dermal Inhalation DNEL Long term Dermal D				kg bw/day	population	
Inhalation DNEL Long term Inhalation DNEL Long term Dermal DNEL Long term Dermal DNEL Long term 1		DNEL	Long term			Local
DNEL Long term Inhalation DNEL Long term Dermal DNEL Long term Dermal DNEL Long term 1						
Inhalation Long term Dermal D.95 mg/kg bw/day DNEL Long term Inhalation DNEL Long term Inhalation DNEL Short term Oral Short term Oral DNEL Short term Oral Short term Oral		DNEI		0.60 ma/m³		Systemic
DNEL Long term Dermal		DINCL		J.03 mg/m		Cystollio
DNEL Long term 2.31 mg/m³ Workers Local DNEL Long term 2.31 mg/m³ Workers Systemic DNEL Short term Oral 25.6 mg/ kg bw/day DNEL Short term 143.5 mg/ lnhalation population DNEL Short term 160.23 mg/ lnhalation m³ Workers Local DNEL Short term 160.23 mg/ lnhalation m³ General population DNEL Short term 226 mg/m³ General population Systemic DNEL Short term 226 mg/m³ General population Systemic DNEL Short term 384 mg/m³ Workers Systemic DNEL Short term 384 mg/m³ Workers Systemic DNEL Short term 384 mg/m³ Workers Systemic		חאבי		0.05 ~~/		Systemia
DNEL Long term Inhalation DNEL Long term Cral Long term Inhalation DNEL Short term Oral Short term Inhalation DNEL Short term Inhalation D		DINEL	Long term Dermal		VVOIKEIS	Systernic
Inhalation DNEL Long term Inhalation DNEL Short term Oral 25.6 mg/ kg bw/day DNEL Short term 143.5 mg/ Inhalation DNEL Short term 160.23 mg/ Inhalation DNEL Short term 226 mg/m³ DNEL Short term Inhalation DNEL Short term 384 mg/m³ DNEL Short term Inhalation DNEL Short term 384 mg/m³ Systemic		D	1		107	
DNEL Long term Inhalation DNEL Short term Oral 25.6 mg/ kg bw/day DNEL Short term 143.5 mg/ Inhalation DNEL Short term 160.23 mg/ Inhalation DNEL Short term 226 mg/m³ General population DNEL Short term 226 mg/m³ General population DNEL Short term 226 mg/m³ General population DNEL Short term 384 mg/m³ Workers Systemic		DNFL		2.31 mg/m ³	vvorkers	Local
Inhalation Short term Oral DNEL Short term Inhalation DNEL Short term Inha					l	
DNEL Short term Oral 25.6 mg/ kg bw/day DNEL Short term 143.5 mg/ Inhalation m³ population DNEL Short term 160.23 mg/ Inhalation m³ DNEL Short term 226 mg/m³ General population Workers Local Systemic population Workers Systemic population Systemic population Workers Systemic population Systemic population Workers Systemic population Note: Systemic population Systemic population Systemic population Workers Systemic population Workers Systemic population Note: Sy		DNEL	•	2.31 mg/m ³	Workers	Systemic
DNEL Short term Inhalation Inhalation DNEL Short term Inhalation Systemic S						
DNEL Short term Inhalation Inhalation Inhalation DNEL Short term Inhalation Short term Inhalation Systemic Systemic Systemic Systemic		DNEL	Short term Oral	25.6 mg/	General	Systemic
DNEL Short term Inhalation Short term Inhalation Systemic Systemic Systemic				kg bw/day	population	
Inhalation m³ population Workers Local Inhalation m³ Short term 160.23 mg/ m³ General population Short term 226 mg/m³ General population DNEL Short term 384 mg/m³ Workers Systemic Inhalation		DNEL	Short term			Local
DNEL Short term Inhalation DNEL Short term Inhalation DNEL Short term Inhalation DNEL Short term Inhalation Short term Inhalation Short term Inhalation Inhalation Inhalation Inhalation Inhalation Short term Inhalation Short term Inhalation Short term Inhalation Systemic Sy						
Inhalation m³ Short term 226 mg/m³ General population DNEL Short term 384 mg/m³ Workers Systemic Inhalation 384 mg/m³ Workers Systemic		DNFI				Local
DNEL Short term 1		D. 1LL				
DNEL Inhalation Short term 384 mg/m³ population Systemic Systemic		חאבי			Conoral	Systemia
DNEL Short term 384 mg/m³ Workers Systemic		DINEL		220 mg/m		Systernic
Inhalation		D		004 , 0		
		DNEL		384 mg/m ³	vvorkers	Systemic
4-hydroxy-4-methylpentan-2-one DNEL Long term Oral 1.67 mg/ General Systemic					_	
	4-hydroxy-4-methylpentan-2-one	DNEL	Long term Oral	1.67 mg/	General	Systemic

: 20-1-2023 Date of issue/Date of revision Version : 2 Date of previous issue

AkzoNobel :14-11-2022 11/28

890 Primer/Finish - all colours

SECTION 8: Exposure controls/personal protection

_	_				
			kg bw/day	population	
	DNEL	Long term	5.8 mg/m ³	General	Systemic
		Inhalation		population	_
	DNEL	Long term	32.6 mg/m ³	Workers	Systemic
		Inhalation	"		
	DNEL	Long term Dermal	33 mg/kg	General	Systemic
			bw/day	population	
	DNEL	Short term	240 mg/m ³	Workers	Local
	5.151	Inhalation	407 "		
	DNEL	Long term Dermal	467 mg/kg bw/day	Workers	Systemic
acetone	DNEL	Long term Oral	62 mg/kg	General	Systemic
		-	bw/day	population	
	DNEL	Long term Dermal	62 mg/kg	General	Systemic
		-	bw/day	population	
	DNEL	Long term Dermal	186 mg/kg	Workers	Systemic
			bw/day		
	DNEL	Long term	200 mg/m ³	General	Systemic
		Inhalation		population	
	DNEL	Long term	1210 mg/	Workers	Systemic
		Inhalation	m³		
	DNEL	Short term	2420 mg/	Workers	Local
	5.151	Inhalation	m³		
naphthalene	DNEL	Long term Dermal	3.57 mg/ kg bw/day	Workers	Systemic
	DNEL	Long term	25 mg/m³	Workers	Local
		Inhalation	_		
	DNEL	Long term	25 mg/m ³	Workers	Systemic
		Inhalation			
n-butyl acrylate	DNEL	Long term	11 mg/m³	Workers	Local
		Inhalation			
	DNEL	Long term	11 mg/m³	Workers	Local
		Inhalation			
2-(2-butoxyethoxy)ethanol	DNEL	Long term Oral	6.25 mg/	General	Systemic
	D. 11-1		kg bw/day	population	
	DNEL	Long term	67.5 mg/m ³	Workers	Local
	DAIE	Inhalation	1010 1	14	
	DNEL	Short term	101.2 mg/	Workers	Local
		Inhalation	m³		

PNECs

Product/ingredient name	Compartment Detail	Value	Method Detail
4-hydroxy-4-methylpentan-2-one	Fresh water	2 mg/l	Assessment Factors
	Marine water	0.2 mg/l	Assessment Factors
	Sewage Treatment Plant	100 mg/l	Assessment Factors
	Fresh water sediment	7.4 mg/kg dwt	Equilibrium Partitioning
	Marine water sediment	0.74 mg/kg	Equilibrium Partitioning
	Soil	0.3 mg/kg dwt	Equilibrium Partitioning
n-butyl acrylate	Fresh water	0.003 mg/l	Assessment Factors
	Sewage Treatment Plant	3.5 mg/l	Assessment Factors
	Fresh water sediment Marine water sediment	0.034 mg/kg dwt 0.003 mg/kg dwt	Assessment Factors
	Soil	1 mg/kg dwt	Assessment Factors

8.2 Exposure controls

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202212/28AkzoNobel

890 Primer/Finish - all colours

SECTION 8: Exposure controls/personal protection

Appropriate engineering controls

Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. The engineering controls also need to keep gas, vapour or dust concentrations below any lower explosive limits. Use explosion-proof ventilation equipment.

Individual protection measures

Hygiene measures

: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.

Eye/face protection

: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: chemical splash goggles.

Skin protection

Hand protection

: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.

When prolonged or frequently repeated contact may occur, a glove with a protection class of 6 (breakthrough time >480 minutes according to EN374) is recommended. Recommended gloves: Viton ® or Nitrile, thickness ≥ 0.38 mm. When only brief contact is expected, a glove with protection class of 2 or higher (breakthrough time >30 minutes according to EN374) is recommended. Recommended gloves: Nitrile, thickness ≥ 0.12 mm.

Gloves should be replaced regularly and if there is any sign of damage to the glove material.

The performance or effectiveness of the glove may be reduced by physical/ chemical damage and poor maintenance.

The user must check that the final choice of type of glove selected for handling this product is the most appropriate and takes into account the particular conditions of use, as included in the user's risk assessment.

Body protection

: Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. When there is a risk of ignition from static electricity, wear anti-static protective clothing. For the greatest protection from static discharges, clothing should include anti-static overalls, boots and gloves. Refer to European Standard EN 1149 for further information on material and design requirements and test methods.

Other skin protection

: Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

Respiratory protection

: Based on the hazard and potential for exposure, select a respirator that meets the appropriate standard or certification. Respirators must be used according to a respiratory protection program to ensure proper fitting, training, and other important aspects of use.

Environmental exposure controls

Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.

: 20-1-2023 Date of issue/Date of revision Version : 2 13/28

Date of previous issue :14-11-2022

890 Primer/Finish - all colours

SECTION 9: Physical and chemical properties

The conditions of measurement of all properties are at standard temperature and pressure unless otherwise indicated.

9.1 Information on basic physical and chemical properties

Appearance

Physical state : Liquid.
Colour : Colourless.
Odour : Solvent.
Odour threshold : Not available.
Melting point/freezing point : Not available.
Initial boiling point and : Not available.

boiling range

Flammability : Not available.

Lower and upper explosion : Not available.

limit

Flash point : Closed cup: 25°C (77°F) [Pensky-Martens]

Auto-ignition temperature

Ingredient name	°C	°F	Method
1,4-dioxane	180	356	
2-(2-butoxyethoxy)ethanol	210	410	DIN 51794
Solvent naphtha (petroleum), heavy arom.	220 to 250	428 to 482	ASTM E 659
2-butoxyethanol	230	446	DIN 51794
n-butyl acrylate	275	527	
Solvent naphtha (petroleum), light arom.	280 to 470	536 to 878	
Naphtha (petroleum), hydrodesulfurized heavy	280 to 470	536 to 878	
decamethylcyclopentasiloxane	372	701.6	ASTM E 659-78
octamethylcyclotetrasiloxane	384 to 387	723.2 to 728.6	ASTM E 659
n-butyl acetate	415	779	EU A.15
2-methylpropan-1-ol	415	779	
butyl glycollate	415	779	
Reaction mass of ethylbenzene and xylene	432	809.6	
Aromatic hydrocarbons, C8	432	809.6	
ethylbenzene	432.22	810	
acetone	465	869	
benzene	498	928.4	
naphthalene	526 to 587	978.8 to 1088.6	DIN 51794
1-methylnaphthalene	529	984.2	
4-hydroxy-4-methylpentan-2-one	603	1117.4	

Decomposition temperature: Not available.

pH : Not available. [DIN EN 1262]

Viscosity : Kinematic (room temperature): 792 mm²/s [DIN EN ISO 3219]

Kinematic (40°C): 700 mm²/s [DIN EN ISO 3219]

Solubility(ies) :

Date of issue/Date of revision : 20-1-2023 Version : 2

Date of previous issue : 14-11-2022 14/28 AkzoNobel

890 Primer/Finish - all colours

SECTION 9: Physical and chemical properties

Media	Result
<mark></mark>	Not soluble [OESO (TG 105)]

Partition coefficient: n-octanol/ : Not applicable.

water

Vapour pressure :

	Va	pour Pressu	re at 20°C	Va	pour pressu	re at 50°C
Ingredient name	mm Hg	kPa	Method	mm Hg	kPa	Method
acetone	180.01	24				
benzene	75.01	10				
Aromatic hydrocarbons, C8	31.03	4.1	ASTM D 323			
1,4-dioxane	30.75	4.1				
n-butyl acetate	11.25	1.5	DIN EN 13016-2			
2-methylpropan-1-ol	<12	<1.6	DIN EN 13016-2			
ethylbenzene	9.3	1.2				
Reaction mass of ethylbenzene and xylene	6.7	0.89				
n-butyl acrylate	3.75	0.5				
butyl glycollate	1	0.13				
octamethylcyclotetrasiloxane	0.99	0.13				
4-hydroxy-4-methylpentan-2-one	0.81	0.11				
2-butoxyethanol	0.75	0.1				
decamethylcyclopentasiloxane	0.25	0.033				
naphthalene	0.054	0.0072	OECD 104			
2-(2-butoxyethoxy)ethanol	0.022	0.0029				
Solvent naphtha (petroleum), heavy arom.	0.02	0.0027				

Density : 7.211 g/cm³ [DIN EN ISO 2811-1]

Vapour density : Not available.

Particle characteristics

Median particle size : Not applicable.

■ Mot applicable.

SECTION 10: Stability and reactivity

10.1 Reactivity : No specific test data related to reactivity available for this product or its ingredients.

10.2 Chemical stability : The product is stable.

10.3 Possibility of : Under normal conditions of storage and use, hazardous reactions will not occur. hazardous reactions

10.4 Conditions to avoid : Avoid all possible sources of ignition (spark or flame). Do not pressurise, cut, weld, braze, solder, drill, grind or expose containers to heat or sources of ignition.

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202215/28

AkzoNobel

890 Primer/Finish - all colours

SECTION 10: Stability and reactivity

10.5 Incompatible materials : Reactive or incompatible with the following materials:

oxidising materials

10.6 Hazardous decomposition products

: Under normal conditions of storage and use, hazardous decomposition products

should not be produced.

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Acute toxicity

Product/ingredient name	Result	Species	Dose	Exposure
n-butyl acetate	LC50 Inhalation Gas.	Rat	390 ppm	4 hours
	LC50 Inhalation Vapour	Mouse	6 g/m ³	2 hours
	LD50 Dermal	Rabbit	>17600 mg/kg	-
	LD50 Intraperitoneal	Mouse	1230 mg/kg	_
	LD50 Oral	Guinea pig	4700 mg/kg	_
	LD50 Oral	Mouse	6 g/kg	_
	LD50 Oral	Rabbit	3200 mg/kg	_
	LD50 Oral	Rat	10768 mg/kg	_
trizinc bis(orthophosphate)	LD50 Intraperitoneal	Mouse	552 mg/kg	_
	LD50 Intraperitoneal	Rat	551 mg/kg	_
Reaction mass of	LC50 Inhalation Gas.	Rat	5000 ppm	4 hours
ethylbenzene and xylene		T COL	оссо ррпп	Tribuio
Solvent naphtha	LD50 Oral	Rat	8400 mg/kg	_
(petroleum), light arom.	LB00 Grai	Tat	0400 mg/kg	
2-methylpropan-1-ol	LC50 Inhalation Vapour	Guinea pig	19900 mg/m³	4 hours
	LC50 Inhalation Vapour	Mouse	15500 mg/m³	2 hours
	LC50 Inhalation Vapour	Rabbit	2630 mg/m ³	4 hours
	LC50 Inhalation Vapour	Rat	19200 mg/m³	4 hours
	LD50 Dermal	Rabbit	3400 mg/kg	4 110015
			1201 mg/kg	-
	LD50 Intraperitoneal	Guinea pig		-
	LD50 Intraperitoneal	Mouse	544 mg/kg	-
	LD50 Intraperitoneal	Mouse	544 mg/kg	-
	LD50 Intraperitoneal	Rabbit	323 mg/kg	-
	LD50 Intraperitoneal	Rat	720 mg/kg	-
	LD50 Intravenous	Mouse	417 mg/kg	-
	LD50 Intravenous	Rat	340 mg/kg	-
	LD50 Oral	Mouse	3500 mg/kg	-
	LD50 Oral	Rabbit	74.1 mg/kg	-
	LD50 Oral	Rat	2460 mg/kg	-
4-hydroxy-4-methylpentan- 2-one	LD50 Dermal	Rabbit	13500 mg/kg	-
	LD50 Intraperitoneal	Mouse	933 mg/kg	-
	LD50 Oral	Mouse	3950 mg/kg	-
	LD50 Oral	Mouse	3000 mg/kg	-
	LD50 Oral	Rat	2520 mg/kg	-
	LD50 Oral	Rat	4000 mg/kg	-
acetone	LC50 Inhalation Vapour	Mouse	44 g/m³	4 hours
	LC50 Inhalation Vapour	Rat	50100 mg/m ³	8 hours
	LD50 Intraperitoneal	Mouse	1297 mg/kg	_
	LD50 Intravenous	Rat	5500 mg/kg	_
	LD50 Oral	Mouse	3 g/kg	_
	LD50 Oral	Rabbit	5340 mg/kg	_
	LD50 Oral	Rat	5800 mg/kg	_
	LD50 Oral	Rat	5800 mg/kg	_
naphthalene	LD50 Dermal	Rabbit	>20 g/kg	_
Taphinalono	LD50 Intraperitoneal	Mouse	150 mg/kg	
	LD50 Intravenous	Mouse	100 mg/kg	
	LD00 IIII avoilous	IVIOGOG	100 1119/119	

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202216/28

AkzoNobel

890 Primer/Finish - all colours

SECTION 11: Toxicological information

I D50 Oral	Mouse	316 ma/ka	_
· ·			_
		2730 nnm	4 hours
			2 hours
•			_ louis
			_
			_
			_
			_
			-
			-
			-
		2 9/kg	-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
·	Mouse	6050 mg/kg	-
•			
•	Rat	4500 mg/kg	-
unreported			
	LD50 Oral LD50 Oral LD50 Subcutaneous LD50 Intraperitoneal LD50 Oral LC50 Inhalation Gas. LC50 Inhalation Vapour LD50 Dermal LD50 Intraperitoneal LD50 Oral LD50 Oral LD50 Intraperitoneal LD50 Intraperitoneal LD50 Intraperitoneal LD50 Intraperitoneal LD50 Oral LD50 Route of exposure unreported LD50 Route of exposure	LD50 Oral LD50 Subcutaneous LD50 Intraperitoneal LD50 Oral Rat LC50 Inhalation Gas. Rat LC50 Inhalation Vapour LD50 Dermal LD50 Intraperitoneal LD50 Intraperitoneal LD50 Intraperitoneal LD50 Oral LD50 Oral LD50 Intraperitoneal LD50 Oral LD50 Oral Guinea pig LD50 Oral Guinea pig LD50 Oral Mouse LD50 Oral Mouse LD50 Oral Rat LD50 Route of exposure Unreported LD50 Route of exposure Rat	LD50 Oral Rat 490 mg/kg LD50 Subcutaneous Mouse 969 mg/kg LD50 Intraperitoneal Rat 1.84 g/kg LD50 Oral Rat 1840 mg/kg LC50 Inhalation Gas. Rat 2730 ppm LC50 Inhalation Vapour Mouse 7800 mg/m³ LD50 Dermal Rabbit 2 mL/kg LD50 Intraperitoneal Mouse 200 mL/kg LD50 Intraperitoneal Rat 550 mg/kg LD50 Oral Rat 900 mg/kg LD50 Intraperitoneal Mouse 888 mg/kg LD50 Intraperitoneal Mouse 850 mg/kg LD50 Intraperitoneal Mouse 850 mg/kg LD50 Intraperitoneal Mouse 850 mg/kg LD50 Oral Guinea pig 2 g/kg LD50 Oral Guinea pig 2 g/kg LD50 Oral Mouse 4500 mg/kg LD50 Oral Mouse 4500 mg/kg LD50 Oral Rat 5660 mg/kg LD50 Oral Rat 4500 mg/kg

Conclusion/Summary

: Not available.

Acute toxicity estimates

Product/ingredient name	Oral (mg/ kg)	Dermal (mg/kg)	Inhalation (gases) (ppm)	Inhalation (vapours) (mg/l)	Inhalation (dusts and mists) (mg/l)
₹2/RC1A29/EU 890 2K ISOCYANATE-FREE PRIM	N/A	10549.7	80298.2	261.9	N/A
Reaction mass of ethylbenzene and xylene	N/A	1100	5000	N/A	N/A
Aromatic hydrocarbons, C8	N/A	1100	N/A	11	N/A
naphthalene	500	N/A	N/A	N/A	N/A
butyl acrylate	N/A	N/A	N/A	11	N/A
(Z)-octadec-9-enylamine	500	N/A	N/A	N/A	N/A

Irritation/Corrosion

Product/ingredient name	Result	Species	Score	Exposure	Observation
<mark>ଜ-</mark> butyl acetate	Eyes - Moderate irritant	Rabbit	-	100 mg	-
	Skin - Moderate irritant	Rabbit	-	24 hours 500	-
				mg	
Reaction mass of	Eyes - Mild irritant	Rabbit	-	87 mg	-
ethylbenzene and xylene					
	Eyes - Severe irritant	Rabbit	-	24 hours 5	-
				mg	
	Skin - Mild irritant	Rat	-	8 hours 60 UI	-
	Skin - Moderate irritant	Rabbit	-	100 %	-
	Skin - Moderate irritant	Rabbit	-	24 hours 500	-
				mg	
Solvent naphtha (petroleum),	Eyes - Mild irritant	Rabbit	-	24 hours 100	-
light arom.				UI	

Date of issue/Date of revision : 20-1-2023 Version : 2

Date of previous issue :14-11-2022 17/28 AkzoNobel

890 Primer/Finish - all colours

SECTION 11: Toxicological information

Solvent naphtha (petroleum),	Skin - Mild irritant	Rabbit	_	24 hours 500	_
heavy arom.				UI	
4-hydroxy-4-methylpentan-	Eyes - Severe irritant	Rabbit	_	24 hours 100	-
2-one				UI	
	Eyes - Severe irritant	Rabbit	-	20 mg	-
	Skin - Mild irritant	Rabbit	-	500 mg	-
acetone	Eyes - Mild irritant	Rabbit	-	10 UI	-
	Eyes - Moderate irritant	Rabbit	-	24 hours 20	-
				mg	
	Eyes - Severe irritant	Rabbit	-	20 mg	-
	Skin - Mild irritant	Rabbit	-	395 mg	-
	Skin - Mild irritant	Rabbit	-	24 hours 500	-
				mg	
naphthalene	Skin - Mild irritant	Rabbit	-	495 mg	-
	Skin - Severe irritant	Rabbit	-	24 hours	-
				0.05 MI	
1-methylnaphthalene	Skin - Moderate irritant	Rabbit	-	24 hours	-
				0.05 MI	
n-butyl acrylate	Eyes - Mild irritant	Rabbit	-	50 mg	-
	Eyes - Mild irritant	Rabbit	-	24 hours 500	-
				mg	
	Skin - Mild irritant	Rabbit	-	24 hours 10	-
				mg	
	Skin - Mild irritant	Rabbit	-	500 mg	-
2-(2-butoxyethoxy)ethanol	Eyes - Moderate irritant	Rabbit	-	24 hours 20	-
				mg	
	Eyes - Severe irritant	Rabbit	-	20 mg	-

Conclusion/Summary

Sensitisation

Conclusion/Summary

Mutagenicity

Conclusion/Summary

Carcinogenicity

Teratogenicity

Conclusion/Summary

Reproductive toxicity

Conclusion/Summary

: Not available.

Conclusion/Summary : Not available. Specific target organ toxicity (single exposure)

Product/ingredient name	Category	Route of exposure	Target organs
<mark>ਯ-</mark> butyl acetate	Category 3	-	Narcotic effects
Reaction mass of ethylbenzene and xylene	Category 3	-	Respiratory tract irritation
Solvent naphtha (petroleum), light arom.	Category 3	-	Respiratory tract irritation
	Category 3		Narcotic effects
Hydrocarbons, C9, aromatics	Category 3	-	Respiratory tract irritation
	Category 3		Narcotic effects
Aromatic hydrocarbons, C8	Category 3	-	Respiratory tract irritation
2-methylpropan-1-ol	Category 3	-	Respiratory tract irritation
	Category 3		Narcotic effects

Date of issue/Date of revision : 20-1-2023 :2 Version Date of previous issue :14-11-2022 18/28

AkzoNobel

890 Primer/Finish - all colours

SECTION 11: Toxicological information

Hydrocarbons, C9-C12, n-alkanes, isoalkanes, cyclic, aromatics (2-25%)	Category 3	-	Narcotic effects
Solvent naphtha (petroleum), heavy arom.	Category 3	-	Narcotic effects
4-hydroxy-4-methylpentan-2-one	Category 3	-	Respiratory tract irritation
acetone	Category 3	-	Narcotic effects
n-butyl acrylate	Category 3	-	Respiratory tract irritation
(Z)-octadec-9-enylamine	Category 3	-	Respiratory tract irritation

Specific target organ toxicity (repeated exposure)

Product/ingredient name	Category	Route of exposure	Target organs
Reaction mass of ethylbenzene and xylene	Category 2	-	-
Aromatic hydrocarbons, C8	Category 2	inhalation	-
Hydrocarbons, C9-C12, n-alkanes, isoalkanes, cyclic, aromatics (2-25%)	Category 1	inhalation	-
(Z)-octadeċ-9-enylamine	Category 2	-	gastrointestinal tract, immune system, liver

Aspiration hazard

Product/ingredient name	Result
Reaction mass of ethylbenzene and xylene	ASPIRATION HAZARD - Category 1
Solvent naphtha (petroleum), light arom.	ASPIRATION HAZARD - Category 1
Hydrocarbons, C9, aromatics	ASPIRATION HAZARD - Category 1
Aromatic hydrocarbons, C8	ASPIRATION HAZARD - Category 1
Hydrocarbons, C9-C12, n-alkanes, isoalkanes, cyclic, aromatics (2-25%)	ASPIRATION HAZARD - Category 1
Solvent naphtha (petroleum), heavy arom. (Z)-octadec-9-enylamine	ASPIRATION HAZARD - Category 1 ASPIRATION HAZARD - Category 1

Information on likely routes : Not available.

of exposure

Potential acute health effects

Eye contact : Causes serious eye irritation.

Inhalation : Can cause central nervous system (CNS) depression. May cause drowsiness or

dizziness. May cause respiratory irritation.

Skin contact Causes skin irritation.

: Can cause central nervous system (CNS) depression. Ingestion

Symptoms related to the physical, chemical and toxicological characteristics

Eye contact : Adverse symptoms may include the following:

> pain or irritation watering redness

Inhalation : Adverse symptoms may include the following:

respiratory tract irritation

coughing

nausea or vomiting

headache

drowsiness/fatigue dizziness/vertigo unconsciousness

Date of issue/Date of revision : 20-1-2023 Version :2

AkzoNobel Date of previous issue :14-11-2022 19/28

890 Primer/Finish - all colours

SECTION 11: Toxicological information

Skin contact: Adverse symptoms may include the following:

irritation redness

Ingestion: No specific data.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Short term exposure

Potential immediate : Not available.

effects

Potential delayed effects : Not available.

Long term exposure

Potential immediate

: Not available.

effects

Potential delayed effects : Not available.

Potential chronic health effects

Not available.

Conclusion/Summary: Not available.

General: May cause damage to organs through prolonged or repeated exposure.

Carcinogenicity : No known significant effects or critical hazards.
 Mutagenicity : No known significant effects or critical hazards.
 Reproductive toxicity : No known significant effects or critical hazards.

11.2 Information on other hazards

11.2.1 Endocrine disrupting properties

Not available.

11.2.2 Other information

Not available.

SECTION 12: Ecological information

12.1 Toxicity

There are no data available on the mixture itself.

Do not allow to enter drains or watercourses.

The mixture has been assessed following the summation method of the CLP Regulation (EC) No 1272/2008 and is classified for eco-toxicological properties accordingly. See Sections 2 and 3 for details.

Product/ingredient name	Result	Species	Exposure
<mark>թ-</mark> butyl acetate	Acute LC50 32 mg/l Marine water	Crustaceans - Artemia salina	48 hours
	Acute LC50 62000 µg/l Fresh water	Fish - Danio rerio	96 hours
	Acute LC50 100000 µg/l Fresh water	Fish - Lepomis macrochirus	96 hours
	Acute LC50 185000 µg/l Marine water	Fish - Menidia beryllina	96 hours
	Acute LC50 18000 µg/l Fresh water	Fish - Pimephales promelas	96 hours
trizinc bis(orthophosphate)	Acute LC50 90 µg/l Fresh water	Fish - Oncorhynchus mykiss	96 hours
Reaction mass of ethylbenzene and xylene	Acute LC50 13400 μg/l Fresh water	Fish - Pimephales promelas	96 hours
2-methylpropan-1-ol	Acute EC50 1200000 μg/l Fresh water	Crustaceans - Ceriodaphnia reticulata - Larvae	48 hours
	Acute EC50 1439 mg/l Fresh water	Daphnia - Daphnia magna	48 hours
	Acute EC50 1300000 μg/l Fresh water	Daphnia - Daphnia magna - Larvae	48 hours
	Acute EC50 1100000 μg/l Fresh water	Daphnia - Daphnia pulex - Larvae	48 hours

AkzoNobel

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202220/28

890 Primer/Finish - all colours

SECTION 12: Ecological information

	Acute EC50 1460 mg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 600 mg/l Marine water	Crustaceans - Artemia salina	48 hours
	Acute LC50 1190000 μg/l Fresh water	Daphnia - Daphnia magna -	48 hours
		Neonate	
	Acute LC50 1030000 µg/l Fresh water	Daphnia - Daphnia magna -	48 hours
		Neonate	
	Acute LC50 1460000 µg/l Fresh water	Fish - Ictalurus punctatus	96 hours
	Acute LC50 1330000 µg/l Fresh water	Fish - Oncorhynchus mykiss	96 hours
	Acute LC50 1430000 µg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 1510000 μg/l Fresh water	Fish - Pimephales promelas	96 hours
	Chronic NOEC 20 mg/l Fresh water	Daphnia - Daphnia magna	21 days
	Chronic NOEC 4000 µg/l Fresh water	Daphnia - Daphnia magna	21 days
4-hydroxy-4-methylpentan-	Acute LC50 420000 μg/l Fresh water	Fish - Lepomis macrochirus	96 hours
2-one	A		001
	Acute LC50 420000 µg/l Marine water	Fish - Menidia beryllina	96 hours
acetone	Acute EC50 11493300 µg/l Fresh water	Algae - Navicula seminulum	96 hours
	Acute EC50 11727900 μg/l Fresh water		96 hours
	Acute EC50 7200000 µg/l Fresh water	Algae - Selenastrum sp.	96 hours
	Acute EC50 20.565 mg/l Marine water	Algae - Ulva pertusa	96 hours
	Acute LC50 4.42589 ml/L Marine water	Crustaceans - Acartia tonsa -	48 hours
	A	Copepodid	40 5
	Acute LC50 7550000 µg/l Fresh water	Crustaceans - Asellus aquaticus	48 hours
	Acute LC50 8098000 µg/l Fresh water	Crustaceans - Ceriodaphnia	48 hours
	Aputo I 050 44 00407 // 5 /	dubia - Neonate	40 h
	Acute LC50 11.26487 ml/L Fresh water	Crustaceans - Gammarus pulex	48 hours
		- Juvenile (Fledgling, Hatchling,	
	A suita I CEO COOCOO// Freeh	Weanling)	40 5000
	Acute LC50 6000000 µg/l Fresh water	Crustaceans - Gammarus pulex	48 hours
	Acute LC50 7460000 µg/l Fresh water	Daphnia - Daphnia cucullata	48 hours
	Acute LC50 7810000 µg/l Fresh water	Daphnia - Daphnia cucullata	48 hours
	Acute LC50 10000 µg/l Fresh water	Daphnia - Daphnia magna	48 hours
	Acute LC50 9218000 µg/l Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
	Acute LC50 8800000 µg/l Fresh water	Daphnia - Daphnia pulex	48 hours
	Acute LC50 8000 ppm Fresh water	Fish - Oncorhynchus mykiss	96 hours
	Acute LC50 7280000 µg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 8120000 µg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 6210000 µg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 5600 ppm Fresh water	Fish - Poecilia reticulata	96 hours
	Chronic NOEC 0.5 ml/L Marine water	Algae - Karenia brevis	96 hours
	Chronic NOEC 100 ul/L Marine water	Algae - Skeletonema costatum	72 hours
	Chronic NOEC 100 ul/L Marine water	Algae - Skeletonema costatum	96 hours
	Chronic NOEC 4.95 mg/l Marine water	Algae - Ulva pertusa	96 hours
	Chronic NOEC 0.016 ml/L Fresh water	Crustaceans - Bosminidae	21 days
	Chronic NOEC 0.016 ml/L Fresh water	Crustaceans - Chydoridae	21 days
	Chronic NOEC 0.016 ml/L Fresh water	Crustaceans - Daphniidae	21 days
	Chronic NOEC 0.016 ml/L Fresh water	Crustaceans - Macrothricidae	21 days
	Chronic NOEC 0.016 ml/L Fresh water	Crustaceans - Maxillopoda	21 days
	Chronic NOEC 1 g/L Fresh water	Daphnia - Daphnia magna	21 days
	Chronic NOEC 1 g/L Fresh water	Daphnia - Daphnia magna	21 days
	Chronic NOEC 0.1 ml/L Fresh water	Daphnia - Daphnia magna - Neonate	21 days
	Chronic NOEC 0.1 ml/L Fresh water	Daphnia - Daphnia magna - Neonate	21 days
	Chronic NOEC 0.1 ml/L Fresh water	Daphnia - Daphnia magna - Neonate	21 days
	Chronic NOEC 0.1 mg/l Fresh water	Fish - Fundulus heteroclitus	4 weeks
	Chronic NOEC 0.1 mg/l Fresh water	Fish - Fundulus heteroclitus	4 weeks
	Chronic NOEC 5 µg/l Marine water	Fish - Gasterosteus aculeatus -	42 days
		Larvae	
<u> </u>	Chronic NOEC 5 µg/l Marine water	Fish - Gasterosteus aculeatus -	42 days

Date of issue/Date of revision
Date of previous issue

: 20-1-2023 : 14-11-2022

Version : 2

21/28

890 Primer/Finish - all colours

SECTION 12: Ecological information

DEOTION 12. Ecolog			
		Larvae	
	Chronic NOEC 5 µg/l Marine water	Fish - Gasterosteus aculeatus - Larvae	42 days
naphthalene	Acute EC50 5.96 mg/l Marine water	Crustaceans - Artemia sp Nauplii	48 hours
	Acute EC50 1.6 mg/l Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
	Acute EC50 1.96 mg/l Fresh water	Daphnia - Daphnia magna	48 hours
	Acute EC50 1.6 ppm Fresh water	Daphnia - Daphnia magna	48 hours
	Acute EC50 2194 µg/l Fresh water	Daphnia - Daphnia magna	48 hours
	Acute LC50 2800 µg/l Marine water	Crustaceans - Elasmopus pectenicrus - Adult	48 hours
	Acute LC50 3930 μg/l Fresh water	Crustaceans - Gammarus minus - Adult	48 hours
	Acute LC50 2.6 ppm Marine water	Crustaceans - Palaemonetes	48 hours
	Acute LC50 2350 μg/l Marine water	Crustaceans - Palaemonetes pugio	48 hours
	Acute LC50 2160 μg/l Fresh water	Daphnia - Daphnia magna - Juvenile (Fledgling, Hatchling, Weanling)	48 hours
	Acute LC50 372 µg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Acute LC50 438 μg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Acute LC50 213 µg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Acute LC50 313 μg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Acute LC50 315 µg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Chronic NOEC 0.5 mg/l Marine water	Crustaceans - Uca pugnax - Adult	3 weeks
	Chronic NOEC 1.5 mg/l Fresh water	Fish - Oreochromis mossambicus	60 days
1-methylnaphthalene	Acute LC50 8200 μg/l Marine water	Crustaceans - Cancer magister - Zoea	48 hours
	Acute LC50 9000 μg/l Fresh water	Fish - Pimephales promelas - Juvenile (Fledgling, Hatchling, Weanling)	96 hours
2-(2-butoxyethoxy)ethanol	Acute LC50 1300000 μg/l Fresh water	Fish - Lepomis macrochirus	96 hours
	Acute LC50 2000000 μg/l Marine water	Fish - Menidia beryllina	96 hours

Conclusion/Summary: Not available.

12.2 Persistence and degradability

Conclusion/Summary: Not available.

12.3 Bioaccumulative potential

Product/ingredient name	LogP _{ow}	BCF	Potential
<mark>ଜ-</mark> butyl acetate	2.3	-	low
trizinc bis(orthophosphate)	-	60960	high
Reaction mass of ethylbenzene and xylene	3.12	8.1 to 25.9	low
Solvent naphtha (petroleum), light arom.	-	10 to 2500	high
Aromatic hydrocarbons, C8	3.12	8.1 to 25.9	low
2-methylpropan-1-ol	1	-	low
Solvent naphtha (petroleum),	2.8 to 6.5	99 to 5780	high

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202222/28AkzoNobel

890 Primer/Finish - all colours

SECTION 12: Ecological information				
heavy arom.	0.444, 4.00		1	
4-hydroxy-4-methylpentan-	-0.14 to 1.03	-	low	
2-one				
acetone	-0.23	-	low	
naphthalene	3.4	36.5 to 168	low	
1-methylnaphthalene	3.87	53.7	low	
n-butyl acrylate	2.38	17.27	low	
2-(2-butoxyethoxy)ethanol	1	-	low	

12.4 Mobility in soil

Soil/water partition coefficient (Koc)

: Not available.

Mobility : Not available.

12.5 Results of PBT and vPvB assessment

This mixture does not contain any substances that are assessed to be a PBT or a vPvB.

12.6 Endocrine disrupting properties

Not available.

12.7 Other adverse effects

No known significant effects or critical hazards.

SECTION 13: Disposal considerations

The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s).

13.1 Waste treatment methods

Product

Methods of disposal

: The generation of waste should be avoided or minimised wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction.

Hazardous waste

: The classification of the product may meet the criteria for a hazardous waste.

Disposal considerations

: Do not allow to enter drains or watercourses.

Dispose of according to all federal, state and local applicable regulations.

If this product is mixed with other wastes, the original waste product code may no

longer apply and the appropriate code should be assigned. For further information, contact your local waste authority.

European waste catalogue (EWC)

The European Waste Catalogue classification of this product, when disposed of as waste, is:

Waste code	Waste designation
EWC 08 01 11*	waste paint and varnish containing organic solvents or other hazardous substances

Packaging

Methods of disposal

: The generation of waste should be avoided or minimised wherever possible. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible.

Date of issue/Date of revision	: 20-1-2023	Version : 2	
Date of previous issue	:14-11-2022	23/28	AkzoNobel

890 Primer/Finish - all colours

SECTION 13: Disposal considerations

Disposal considerations

Using information provided in this safety data sheet, advice should be obtained from the relevant waste authority on the classification of empty containers. Empty containers must be scrapped or reconditioned.

Dispose of containers contaminated by the product in accordance with local or

national legal provisions.

Special precautions

: This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Vapour from product residues may create a highly flammable or explosive atmosphere inside the container. Do not cut, weld or grind used containers unless they have been cleaned thoroughly internally. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers.

SECTION 14: Transport information

	ADR/RID	IMDG	IATA
14.1 UN number or ID number	UN1263	UN1263	UN1263
14.2 UN proper shipping name	PAINT	PAINT	PAINT
14.3 Transport hazard class(es)	3	3	3
14.4 Packing group	III	III	III
14.5 Environmental hazards	Yes.	Marine Pollutant(s): Solvent naphtha (petroleum), light arom., trizinc bis (orthophosphate)	Yes. The environmentally hazardous substance mark is not required.

Additional information

ADR/RID

: <u>Viscous liquid exception</u> This class 3 viscous liquid that is also environmentally hazardous is not subject to regulation in packagings up to 5 L, provided the packagings meet the general provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8 according to 2.2.3.1.5.2.

Tunnel code (D/E)

: Emergency schedules F-E, _S-E_ **IMDG**

Viscous liquid exception This class 3 viscous liquid that is also environmentally hazardous is not subject to regulation in packagings up to 5 L, provided the packagings meet the general provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8 according to 2.3.2.5.

IMDG Code Segregation group SGG1 - Acids

: The environmentally hazardous substance mark may appear if required by other

transportation regulations.

user

IATA

14.6 Special precautions for : Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

14.7 Maritime transport in bulk according to IMO

: Not applicable.

instruments

Date of issue/Date of revision : 20-1-2023 Version : 2

AkzoNobel Date of previous issue :14-11-2022 24/28

890 Primer/Finish - all colours

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture UK (GB) /REACH

Annex XIV - List of substances subject to authorisation

Annex XIV

None of the components are listed.

Substances of very high concern

None of the components are listed.

on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Annex XVII - Restrictions: Not applicable.

Other EU regulations

VOC : The provisions of Directive 2004/42/EC on VOC apply to this product. Refer to the

product label and/or technical data sheet for further information.

VOC for Ready-for-Use

Mixture

: Not available.

Industrial emissions (integrated pollution

prevention and control) -

: Not listed

Air

Industrial emissions (integrated pollution prevention and control) - : Not listed

preventi Water

Ozone depleting substances (1005/2009/EU)

Not listed.

Prior Informed Consent (PIC) (649/2012/EU)

Not listed.

Persistent Organic Pollutants

Annex	Ingredient name	Status
Annex III	2-methylnaphthalene	Listed
	naphthalene 1-methylnaphthalene	Listed Listed

Seveso Directive

This product is controlled under the Seveso Directive.

Danger criteria

Category	
P5c E2	
E2	

National regulations

industrial use : The information contained in this safety data sheet does not constitute the user's own assessment of workplace risks, as required by other health and safety

legislation. The provisions of the national health and safety at work regulations apply to the use of this product at work.

to the use of this product at v

International regulations

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202225/28AkzoNobel

890 Primer/Finish - all colours

SECTION 15: Regulatory information

Chemical Weapon Convention List Schedules I, II & III Chemicals

Not listed.

Montreal Protocol

Not listed.

Stockholm Convention on Persistent Organic Pollutants

Not listed.

Rotterdam Convention on Prior Informed Consent (PIC)

Not listed.

UNECE Aarhus Protocol on POPs and Heavy Metals

Ingredient name	List name	Status
2 -methylnaphthalene	POPs - Annex 3	Listed
naphthalene	-	Listed
1-methylnaphthalene	-	Listed

15.2 Chemical safety

assessment

: No Chemical Safety Assessment has been carried out.

SECTION 16: Other information

Indicates information that has changed from previously issued version.

Abbreviations and

: ATE = Acute Toxicity Estimate

acronyms

CLP = Classification, Labelling and Packaging Regulation [Regulation (EC) No.

1272/2008]

DMEL = Derived Minimal Effect Level DNEL = Derived No Effect Level

EUH statement = CLP-specific Hazard statement

N/A = Not available

PBT = Persistent, Bioaccumulative and Toxic PNEC = Predicted No Effect Concentration RRN = REACH Registration Number

SGG = Segregation Group

vPvB = Very Persistent and Very Bioaccumulative

Procedure used to derive the classification according to Regulation (EC) No. 1272/2008 [CLP/GHS]

Classification	Justification
Fam. Liq. 3, H226	On basis of test data
Skin Irrit. 2, H315	Calculation method
Eye Irrit. 2, H319	Calculation method
STOT SE 3, H335	Calculation method
STOT SE 3, H336	Calculation method
STOT RE 2, H373	Calculation method
Aquatic Chronic 2, H411	Calculation method

Full text of abbreviated H statements

⊮ 225	Highly flammable liquid and vapour.
H226	Flammable liquid and vapour.
H228	Flammable solid.
H302	Harmful if swallowed.
H304	May be fatal if swallowed and enters airways.
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.

Date of issue/Date of revision: 20-1-2023Version: 2Date of previous issue: 14-11-202226/28AkzoNobel

890 Primer/Finish - all colours

SECTION 16: Other information	
H319	Causes serious eye irritation.
11333	I lamatul it inhalad

Harmful if inhaled. H332 H335 May cause respiratory irritation. H336 May cause drowsiness or dizziness.

H340 May cause genetic defects.

H350 May cause cancer.

H351 Suspected of causing cancer.

H361d Suspected of damaging the unborn child.

H372 Causes damage to organs through prolonged or repeated

exposure.

May cause damage to organs through prolonged or repeated H373

exposure.

Very toxic to aquatic life. H400

Very toxic to aquatic life with long lasting effects. H410 Toxic to aquatic life with long lasting effects. H411 H412 Harmful to aquatic life with long lasting effects. **EUH019**

May form explosive peroxides.

EUH066 Repeated exposure may cause skin dryness or cracking.

Full text of classifications [CLP/GHS]

Acute Tox. 4 ACUTE TOXICITY - Category 4 Aquatic Acute 1 SHORT-TERM (ACUTE) AQUATIC HAZARD - Category 1 Aquatic Chronic 1 LONG-TERM (CHRONIC) AQUATIC HAZARD - Category 1 Aquatic Chronic 2 LONG-TERM (CHRONIC) AQUATIC HAZARD - Category 2 Aquatic Chronic 3 LONG-TERM (CHRONIC) AQUATIC HAZARD - Category 3

Asp. Tox. 1 ASPIRATION HAZARD - Category 1 Carc. 1A **CARCINOGENICITY - Category 1A** Carc. 1B **CARCINOGENICITY - Category 1B** Carc. 2 **CARCINOGENICITY - Category 2**

Eve Dam. 1 SERIOUS EYE DAMAGE/EYE IRRITATION - Category 1 Eye Irrit. 2 SERIOUS EYE DAMAGE/EYE IRRITATION - Category 2 Flam, Liq, 2

FLAMMABLE LIQUIDS - Category 2 FLAMMABLE LIQUIDS - Category 3 FLAMMABLE SOLIDS - Category 2

GERM CELL MUTAGENICITY - Category 1B REPRODUCTIVE TOXICITY - Category 2 SKIN CORROSION/IRRITATION - Category 1B SKIN CORROSION/IRRITATION - Category 2

SKIN SENSITISATION - Category 1

SPECIFIC TARGET ORGAN TOXICITY - REPEATED

EXPOSURE - Category 1

SPECIFIC TARGET ORGAN TOXICITY - REPEATED

EXPOSURE - Category 2

SPECIFIC TARGET ORGAN TOXICITY - SINGLE EXPOSURE -

Category 3

: 1 March 2023 Date of printing Date of issue/ Date of : 20 January 2023

revision

Flam. Liq. 3

Flam. Sol. 2

Muta. 1B

Skin Irrit. 2

Skin Sens. 1

STOT RE 1

STOT RE 2

STOT SE 3

Repr. 2 Skin Corr. 1B

Date of previous issue : 14 November 2022

Version : 2 **Unique ID**

Notice to reader

Date of issue/Date of revision : 20-1-2023 Version : 2 **AkzoNobel** Date of previous issue :14-11-2022 27/28

890 Primer/Finish - all colours

SECTION 16: Other information

FOR PROFESSIONAL USE ONLY

IMPORTANT NOTE The information in this data sheet is not intended to be exhaustive and is based on the present state of our knowledge and on current laws: any person using the product for any purpose other than that specifically recommended in the technical data sheet without first obtaining written confirmation from us as to the suitability of the product for the intended purpose does so at his own risk. It is always the responsibility of the user to take all necessary steps to fulfill the demands set out in the local rules and legislation. Always read the Material Data Sheet and the Technical Data Sheet for this product if available. All advice we give or any statement made about the product by us (whether in this data sheet or otherwise) is correct to the best of our knowledge but we have no control over the quality or the condition of the substrate or the many factors affecting the use and application of the product. Therefore, unless we specifically agree in writing otherwise, we do not accept any liability whatsoever for the performance of the product or for any loss or damage arising out of the use of the product. All products supplied and technical advice given are subject to our standard terms and conditions of sale. You should request a copy of this document and review it carefully. The information contained in this data sheet is subject to modification from time to time in the light of experience and our policy of continuous development. It is the user's responsibility to verify that this data sheet is current prior to using the product.

Brand names mentioned in this data sheet are trademarks of or are licensed to Akzo Nobel.

Date of issue/Date of revision : 20-1-2023 Version : 2

Date of previous issue : 14-11-2022

AkzoNobel

28/28